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Abstract
In recent work with symmetric chaotic
systems, we synchronized two such
systems with one-way driving. The drive
system had 2 possible attractors, but the
response system always synchronized
with the drive system. In this work, we
show how we may combine 2 attractor
chaotic systems with a multiplexing
technique first developed by Tsimring
and Suschick to make a simple
communications system. We note that
our response system is never
synchronized to our drive system (not
even in a generalized sense), but we are
still able to transmit information. We
characterize the performance of the
communications system when noise is
added to the transmitted signal.

1. Introduction
It has been suggested recently that
chaotic systems might be useful for
communications [1-7]. There are many
practical problems that arise when a
chaotic signal is transmitted. Among
these problems is additive noise. In
conventional digital communications
systems, one tries to decide which of
several symbols has been transmitted in a
noisy environment using the principal of
maximum likelihood [8]. If there are
several possible symbols that might have
been transmitted, the most likely symbol
is taken to be the received symbol.
Naturally, this estimation is easier if the
symbols are far apart in some symbol
space. For our chaotic communications
system, we use two widely separated
attractors for our two symbols. We then
combine signals from two chaotic
systems so that our transmitted signal has

no DC component. We follow this
procedure with two different chaotic
systems, and compare signal to noise
performance.

2. Multiple attractor systems
The basic principle that we will use has
been described previously [9] in a 4-
dimensional circuit. The circuit had a
symmetric nonlinearity, so that for some
parameters the circuit had two symmetric
attractors. We built a drive circuit which
drove a response circuit through a one-
way driving. Normally, one would expect
that the response circuit would also have
two attractors, so that the response would
not synchronize to the drive unless the
response circuit was in the correct basin
of attraction. For some parameters,
however, the out-of-sync attractor in the
response circuit was near neutral
stability. After a few cycles in the out-of-
sync attractor, the response system
converged to the in sync attractor.

.In order to have a drive signal with no
DC component, we use a technique of
Tsimring and Suschick [6] to add signals
from two chaotic systems in order to
cancel the DC components.

3. General layout
Figure 1 is a block diagram of our
technique applied to a pair of 3-
dimensional chaotic systems. Drive
systems A and B do not have to be
identical, although in this paper we will
use identical systems for simplicity. A
and B are both symmetric nonlinear
systems (they do not have to be chaotic)
with 2 attractors each. We form a linear
combination of signals from A and B. We
choose the linear combination so that the
DC level of the transmitted signal u is 0.



If we have identical systems in opposite
attractors, this requires that k4 = k1,  k5 =
k2, and k6 = k3 . For non identical
systems, the k's must be chosen
appropriately so that the time average of
u is 0. The idea of making a linear
combination of drive variables comes
from control theory [10] and the work of
Peng et al. [11] who used this technique
to synchronize hyperchaotic systems. We
have shown [12] that such a technique
can make the response system very stable
and insensitive to parameter mismatch.
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Fig. 1 Block diagram of a 2-attractor chaotic
communications system. A and B are chaotic
systems in the transmitter, while A' and B' are
chaotic systems in the response. The information
signal, s, is ± 1.

To change symbols, we can either flip the
attractors in A and B or we can invert the
transmitted signal u, which is equivalent.
We multiply the transmitted signal u by s
= ±1 to produce us = su . The signal s is
our binary information signal.

The response systems are A' and B'. We
make an identical linear combination of
variables from A' and B' to make u' , and
generate a difference signal v = us - u' .
The difference signal is multiplied by one
of the constants bi (i = 1,6) and fed back
into the response systems. The k's and b's
are chosen according to techniques in
[13].

Confirming an observation of Tsimring
and Suschick [6], we show  in [13] that
multiplexing by adding chaotic signals
always results in an unstable response
system when the response system
consists of two identical chaotic systems.
Because of the structure of the coupling,
the eigenvalues of one of the jacobians of
the chaotic systems will also be the
eigenvalue of the chaotic response

system, so the response system can never
be stable (for identical systems).

Because the response systems are not
stable, our response systems A' and B'
actually do not synchronize to the drive
systems A and B. In our case, this lack of
synchronization is not a problem because
we are not interested in synchronization
itself but rather in determining which
attractors the drive systems are in. We
will see below that even without
synchronization, we have more than
enough information to determine the
drive system attractors. We show in [13]
how to couple the drive and response
systems so that the response system
motion remains bounded. We note that
we could also use periodic attractors for
our communications system, which might
change the instability problem.

4. Symmetric Rossler system
Two Attractor Signaling
We first use a 3-dimensional system that
is similar to the Rossler system. Our
symmetric Rossler system has a
symmetric piecewise nonlinearity. The
system is described by (i = 0,1, j = 3i +
3):
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where g1(x ) is 5(x + 3) if x > -3, 5(x - 3)

if x > 3, and 0 otherwise, ρ  = 0.25, α 0 =

1.2 and α 1 = 1. The k parameters are
given below.  There are two chaotic
systems (i = 0 and i = 1) corresponding to
A and B in Fig. 1. Each drive system was
in an opposite attractor.

We numerically integrated eqs. (1) with a
4-th order Runge-Kutta integration
routine [14] with a time step of 0.2 s.
Figure 2(a) shows the one of the



attractors from the symmetric Rossler
system, while Fig 2(b) shows the other.
We will call these two attractors the +
attractor and the - attractor.
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Fig. 2 (a) is the + attractor for the symmetric
Rossler system of eq. (1). (b) is the - attractor for
the symmetric Rossler system of eq. (1).

The response system is described by
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where the parameters are the same as in
eq. (1). The parameter s = ±1 is our
binary information signal, as described
above. The k's were k1 = -1.2824, k2 =
1.91712, k3 = 1.19166, k4 = k1, k5 = k2 ,
and k6 = k3 and the b's were b1 =
1.09793, b2 = 0.65328, b3 = 0, b4 =
1.62025, b5 = 1.12384, b6 = 0.

To decode the transmitted message, we
simply track whether system A' is in the
+ attractor or the - attractor. To aid in the
detection, we use a low pass filter. We
can change the value of s at time t = nT,
where T is one clock period.  Our
detector is described by
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At time nT ,  just before resetting, a
positive value of w indicates that s = +1,
while a negative value of w  indicates s =
-1.

We characterized the performance of our
communications system when subject to
noise by calculating the probability of bit
error Pb as a function of the ratio of bit
energy Eb to noise power spectral density
N0 . We integrated eqs. (1-3) for 800,000
steps with a time step of 0.2 s. We set the
value of s at +1 and reset the detector
variable w to 0 every T = 40 s. We
measured the value of w just before
resetting. If the value of w was not
greater than 0, a bit error was recorded.

We added Gaussian noise to the
transmitted signal u . We changed the
variance of the noise to change the power
spectral density N0 . We calculated the
bit energy Pb by finding the average
power in the transmitted signal and
multiplying by the data period T. In
Figure 3 we plot the bit error rate Pb as a
function of Eb/N0 . For comparison, we
also plot Pb for a bipolar binary baseband
signaling system, as calculated in [8]. A
"bipolar binary baseband" signal consists
of sending +1 or -1, as if we were
transmitting only s.

Parameter Modulation Signaling
As an additional comparison in Fig. 3, we
used the system of eqs. (1-3) to transmit
information using parameter modulation.
We switched the parameter ρ  in the
transmitter between 0.25 and 0.2, while
keeping all parameters in the receiver
fixed. When ρ  was 0.2, the transmitter
and receiver were not matched, and so
did not synchronize. We used the error
signal v in eq. (2) to detect the
information signal. Our detector was
again a low pass filter that used the
square of v . We added Gaussian white
noise to the transmitted signal as before



and ran numerical simulations to find the
bit error probability Pb as a function of
Eb/N0 . We plot these results in Fig. 3.
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Fig. 3 Probability of bit error Pb as a function of
energy per bit Eb divided by noise power spectral
density N0 for several different communications
systems. (a),  an analytic example for a bipolar
baseband signal from [8], shown for
comparison.(b), the result for ta he 4-D system
two attractor switching.  (c), the result for the
symmetric Rossler system of eqs (1-3) using two
attractor signaling. (d), the result for the
symmetric Rossler system of eqs. (1-3) using
parameter modulation.

5. Alternate Circuit.
We also used a chaotic system described
in [9]. The + and - attractors in the
chaotic system of ref [9] are better
separated than the attractors for the
piecewise linear Rossler system. We
calculate Pb as a function of Eb/N0 for
this new system. As can be seen on Fig.
3, the system with better seperated
attractors does perform better.

8. Conclusions
We have shown that using attractors for
symbols can improve the noise
robustness of a chaotic communications
system by several orders of magnitude.
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